Guide to Geometric Algebra in Practice
نویسندگان
چکیده
Several applications the tracking of attitude and position of a body based on velocity data. It is tempting to use direction cosine matrices (DCM), for example, to track attitude based on angular velocity data, and to integrate the linear velocity data separately in a suitable frame. In this chapter we make the case for using bivectors as the attitude tracking method of choice since several features make their performance and flexibility superior to that of DCMs, Euler angles or even rotors. We also discuss potential advantages in using CGA to combine the integration of angular and linear velocities in one step, as the features that make bivectors attractive for tracking rotations extend to bivectors that represent general displacements.
منابع مشابه
Tutorial Appendix: Structure Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra
متن کامل
How to Read This Guide to Geometric Algebra in Practice
This book is called a ‘Guide to Geometric Algebra in Practice’. It is composed of chapters by experts in the field and was conceived during the AGACSE-2010 conference in Amsterdam. As you scan the contents, you will find that all chapters indeed use geometric algebra but that the term ‘practice’ means different things to different authors. As we discuss the various Parts below, we guide you thr...
متن کاملHow to Read This Guide to Geometric Algebra in Practice
This book is called a ‘Guide to Geometric Algebra in Practice’. It is composed of chapters by experts in the field and was conceived during the AGACSE-2010 conference in Amsterdam. As you scan the contents, you will find that all chapters indeed use geometric algebra but that the term ‘practice’ means different things to different authors. As we discuss the various Parts below, we guide you thr...
متن کاملThe Shape of Differential Geometry in Geometric Calculus
We review the foundations for coordinate-free differential geometry in Geometric Calculus. In particular, we see how both extrinsic and intrinsic geometry of a manifold can be characterized a single bivector-valued oneform called the Shape Operator. The challenge is to adapt this formalism to Conformal Geometric Algebra for wide application in computer science and engineering.
متن کاملOn Geometric Theorem Proving with Null Geometric Algebra
In algebraic approaches to geometric computing, the general procedure is as follows [11]: first, the geometric configuration, including both the hypotheses and the conclusion, is translated into an algebraic formulation in a prerequisite algebraic language; second, algebraic computations are carried out to the conclusion by utilizing the computational rules of the algebra and the given hypothes...
متن کاملEstimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra
The motion rotors, or motors, are used to model Euclidean motion in 3D conformal geometric algebra. In this chapter we present a technique for estimating the motor which best transforms one set of noisy geometric objects onto another. The technique reduces to an eigenrotator problem and has some advantages over matrix formulations. It allows motors to be estimated from a variety of geometric da...
متن کامل